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Section S.1. List of symbols 
 

∆i, ∆j Image displacement (x,y)  
α Angular displacement 
rp Physical particle radius  
rpi Particle image radius  
Dp Diffusivity of particle, p (m·s-2) 
Deff Effective diffusivity of a pair of particles (m·s-2) 
w Particle probability distribution 
η Particle density (m-2) 
LIP Mean inter-particle distance in 2-D (m) 
Lch Characteristic minimum particle center-to-center distance in object space 
xo x-coordinate of particle mask 
xp x-coordinate of particle, p 
yo y-coordinate of particle mask 
yp y-coordinate of particle, p 
A Peak fluorescence amplitude of particle image 
b Local background image intensity  
σm Characteristic size of particle brightness pattern of PMC mask 
lp Pixel dimension in object space  
g Number of ‘unity’ pixels for a particle group in the binarized image 
IP Fluorescence intensity of particle image 
Ip Integrated fluorescence intensity of background corrected particle image 
Im Peak fluorescence intensity of particle mask 
Iraw Raw particle image fluorescence intensity  
Ibg Background fluorescence intensity 
Iflat Flatfield fluorescence intensity  
Ic Corrected particle image fluorescence intensity  

diffv  Diffusive particle velocity (m·s-1) 

xpv ,


  Uniform advective particle velocity in MC simulation (m·s-1) 

apv ,
  Apparent particle velocity (m·s-1) 

PIVv  Predicted particle velocity from PIV measurements (m·s-1) 
tm Length of particle monitoring time 
tch Characteristic minimum evolution time 
rPMC Particle mask correlation coefficient 
Sh Cross-covariance shift  

max,12R  Maximum collocation coefficient between channel 1 and 2 particle image 

12
~R  Threshold for collocation median values 

  
Subscripts  
1 Spectral channel 1  
2 Spectral channel 2 
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Section S.2. PITC algorithm 

 
S.2.1 Alignment and spatial registration 
 
 We spatially register the two channel images using a bright field image of an alignment 
pattern (Negative 1951 wheel pattern resolution test target from Thorlabs, R3L1S4N). Example 
misaligned (initial) and aligned (final) versions of this test pattern are shown in Figure S.1. We 
used Matlab’s function imregister, an iterative process that requires a pair of images, an image-
similarity metric, an optimizer, and a transformation type. The metric defines the image 
similarity for evaluating the accuracy of the registration. The optimizer defines the methodology 
for minimizing or maximizing the similarity metric. We used Matlab’s function imconfig to 
generate the optimizer and metric assuming multimodal image capture, as the brightness range in 
the two spectral channels are different. The transformation type used for the image alignment is 
specified as “rigid”, which consists of translation (∆i, ∆j), and rotation (α). We set the maximum 
iterations to 1000. The ROI coordinates and the transformation matrix generated in this 
alignment phase are then used to translate and rotate the Ch2 particle image to achieve spatial 
registration with Ch1. Using images of simulated particle patterns; we have verified that this 
alignment procedure results in registration with sub-pixel accuracy. Note, the image alignment 
and registration process will produce artifacts at the perimeter of the images, which are 
eliminated by trimming ~ 5 pixels from the image edges. This entire process needs to be 
performed only periodically as a part of the instrumentation calibration procedure.  

 

Figure S.1 Example of misaligned (initial) and aligned (final) bright-field images of two spectral 
channels recorded with a quad-view imager (Micro-Imager, Photometrics, Tucson, AZ), used here in 
dual-view mode. The images are plotted using Matlab’s function, imshowpair, which displays the 
differences between two images. We used alpha blending to overlay the two spectral channel images 
before (left) and after (right) image registration. Note, alpha blending is the process of combining a 
translucent foreground color with a background color, which produces a new blended color.  These test 
images were taken with a 20x objective with a numerical aperture of 0.5. 
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S.2.2 Particle tracking phase (Channel 1) 
 

S.2.2.1. Micrometer-resolution Particle Image Velocimetry 
 We use measurements of spatially correlated particle motion (i.e., velocities averaged over 

finite subregions containing multiple particles) to guide our individual particle tracking 
algorithm. This correlated particle motion is the result of non-Brownian transport such as fluid 
flow or electrophoresis or both. Micro-PIV provides a robust and high-resolution method for 
determining such spatially correlated particle velocities.1 Micro-PIV was developed specifically 
for microfluidic applications, and has been reviewed and described extensively.1-3 The process 
limits particle tracking to particles near the focal plane of epifluorescence imaging.3 The standard 
process measures the x- and y-components of the velocity field in the imaging plane. For our 
micro-PIV analysis, we used 30 by 100 pixel interrogation regions with 50% overlap (for a total 
of 25 interrogation regions).4,5 Since the flows here were approximately steady, we typically 
averaged velocity information by ensemble averaging 50 correlation functions (each associated 
with an image pair) per velocity calculation.6 For the experimental data in Fig. 4 and Fig. 5, we 
ensemble averaged over 200 correlation functions.  

  
S.2.2.2. Particle Mask Correlation method and Particle Characterization 
 
Particle Mask Correlation (PMC) 
 PMC is performed in parallel with micro-PIV analysis. The PMC7 method identifies particle 

images and their coordinates by convolving raw images with a kernel “mask” made up of a two 
dimensional circularly symmetric Gaussian brightness pattern, Im, expressed as follows:   
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We set the peak brightness, A, to unity, but the value is arbitrary as we normalize cross-

correlations between the image and particle mask (see Eq. 2.2). The mask standard deviation σm 
is chosen equal to or smaller than the radius of the smallest expected particle image radius in the 
image set. In our experiments, the particle brightness spans approximately 3 pixels, and so we set 
σm = lp, where lp is the pixel dimension in the object plane. The particle mask is scanned over the 
entire image plane and the normalized cross-covariance coefficient, PMCr  is calculated at each 
pixel location, (xo, yo). The normalized cross-covariance coefficient between the particle mask 
centered at (xo, yo) and the image subregion of same size centered at (xo, yo) are computed as 
follows:   
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In this study, we set the interrogation area, n x m, to 8σm x 8σm. Here I(i,j) is the brightness value 
of the particle image plane at (i,j), and Î and mÎ are spatial averages of the brightness of the 
particle image plane and the particle mask image in the interrogation area, respectively.7 PMCr
varies between -1 to 1, depending on the degree of similarity between the brightness patterns. 
Pixels with high covariance coefficients indicate the presence of particles. Using a covariance 
threshold of 0.7 enables the PMC method to find all concentric convex brightness patterns of size 
of roughly < 8 σm.7 The calculated covariance coefficient plane is binarized using this threshold. 
For simplicity, we assign the pixel with the highest PMCr  value as the coordinate for the center of 
the particle, (xp,1, yp,1). As an approximation, we evaluate the particle image radius 
(geometrically projected into the object plane) as ( ) π/2

1, ppi glr = , where g is the number of 
‘unity’ pixels for a particle group in the binarized image, and lp is the size of the pixel in the 
object space. While the cross-covariance was performed on raw particle images, the total, or 
integrated particle intensity, Ip,1, is estimated by summing the background corrected intensity of a 
4rpi,1 x 4rpi,1 subregion centered at the particle center (xp,1, yp,1). The corrected images are 
evaluated as follows: 
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The background of the raw image, Ibg is obtained by filtering the original image with a median 

filter of size 10σm x 10σm. The flatfield, Iflat, is obtained by imaging the microchannel filled with 
uniform concentration of dyes (1 µM AF488 and 1 µM AF647) which are processed with a 
median filter of size 10σm x 10σm.   

 
Particle characterization (PC)  
 The PC method can significantly improve the accuracy of particle localization and the 
estimates for particle image radius, rpi and integrated particle image intensity, Ip. In this routine 
we use a two dimensional circularly symmetric Gaussian brightness pattern, IP, to fit the particle 
brightness patterns in the corrected images (See Eq. 2.3) 
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The Gaussian fitting is performed on an 8σm x 8σm subregion bounding the particle. As a first 
guess, the routine uses the median intensity of the subregion for the background, b; the highest 
pixel intensity minus the background for the amplitude, A; and the simple estimates, described in 
the PMC-PC section of the main paper, for particle coordinates and particle image radius for xp, 
yp and rpi. We used and recommend this fitting routine for more detailed cytometry-like data of 
particle populations, as show in Fig. 5 of main paper.  For the simulated particle-to-particle 
binding assay data we present in Figures 3 and S.4, we disabled this Gaussian fitting algorithm 
step in order to save computational time.  
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To eliminate large aggregates and out-of-focus particles from analysis, we implemented size- 
and intensity-based threshold filters. For the particle-to-particle collocation analysis presented in 
this study (unless stated otherwise), we set the size-based threshold to eliminate particles with 
radii larger than the mean plus 2 times the standard deviation of the particle population in each 
image. The intensity-based threshold eliminated all features with intensity 3 times the standard 
deviation away from the mean of the particle population. The output parameters of these phase 
includes particle coordinates, xp,1, yp,1, particle image radius, rpi,1, and integrated fluorescence 
intensity, Ip, for each background-corrected particle image in the image sequence. In the next 
PITC phase (KC-PTV), we correlate and match particles identities between consecutive images 
in order to track their motion in time.   
 

 
S.2.2.3. Kalman filter and χ2-test enhanced Particle Tracking Velocimetry 
 
 For robust and accurate operation, we use a Kalman filter and χ2-test7,8 to track each unique 

particle over time and space. This method, KC-PTV, was developed by Etoh and Takehera for 
particle tracking velocimetry.7,9 KC-PTV was later adapted for microfluidics by incorporating 
micro-PIV.10,11 In KC-PTV, particle image data (here location and particle image radius) from 
the first time step (t = 0) is used to predict the particle information in the next time step 
(t = t+∆t). The probability of two particle images belonging to the same particle identity is 
evaluated using a χ2-test which uses the image data as parameters. See work by Takehara and co-
workers7,8 for more detailed information on implementation.  

 In this phase of our algorithm, we apply filters to the data which reject particle image motions 
which are significantly far from bounds determined by local micro-PIV velocity data and particle 
diffusion estimates. For example, we reject particle matches with apparent velocities, apv ,


, 

which fail the following criteria: ),(5 1,1,, ppPIVapdiff yxvvv  −> . Here, tDv pdiff ∆= 4 , and 
),( jivPIV

 is the drift velocity at the particle position (xp,1,yp,1) obtained from micro-PIV analysis. 
Output parameters from this phase, including particle identification number (ID), and the 
corresponding particle coordinates, xp,1(t), yp,1(t), particle image radius, rpi,1(t),  and integrated 
background-corrected fluorescence intensity, Ip(t), are stored for further processing.  

 
S.2.3. Particle collocation phase from Channel 1 and 2 data 
 

 Our particle collocation approach begins by positioning a small 8σm x 8σm subregion at the 
coordinates of each particle identified and tracked in Ch1. The algorithm then selects a 
16σm x 16σm subregion in Ch2 centered at the same coordinates. We limit the shifts in 
correlations so that the Ch1 subregion always completely overlaps the Ch2 subregion, and so we 
eliminate the known biases associated with cross-correlations of finite-sized correlation 
functions.4,5 For the collocation analysis, we evaluate the normalized cross-covariance as 
described by Eq. 2.2, but where we set Im to the Ch1 subregion and set I to the Ch2 subregion. 
The parameter PMCr is then interpreted as the degree of correlation in the position of the particle 
or particles detected in both Ch1 and Ch2, which we refer to as collocation coefficient, 

),,(12 tyxR oo . ),,(12 tyxR oo is evaluated for widow offsets of (xo, yo) equal to or less than a 
predefined minimum value, ( ) ( ) ( )2,1,2,1, ,min4/1 pipipp rrrrSh ++= . We initially assign the offset 
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(xo, yo) with the highest ),,(12 tyxR oo  value as the coordinate for the center of the Ch2 particle, 
(xp,2, yp,2). If the maximum coefficient, max,12R , is below 0.6, we conclude that no particles are 

present in Ch2 subregion. For such a case, we set 02, =pir  and estimate Ip,2 as the sum of the 
background corrected particle image intensity (Eq. 2.3) of a 4rpi,1 x 4rpi,1 subregion centered at 
(xp,1, yp,1) in Ch2. If max,12R is above 0.6, we conclude that there is a particle in the Ch2 subregion. 
To estimate the radius of the particle, we first binarize the collocation matrix and find the group 
of unity pixels associated with the Ch2 particle coordinates (xp,1, yp,1). We approximate the 
particle image radius as ( ) π/2

2, ppi glr = . Particle radius is subsequently used to determine the 
Ch2 particle intensity, Ip,2, by summing the background corrected image intensity (Eq. 2.3) of a 
4rpi,2 x 4rpi,2 subregion centered at (xp,2, yp,2).  

 Recall that the particle characterization method (see Section S.2.2.2) can significantly 
improve the accuracy of particle localization, size and fluorescence characterization by using a 
sub-pixel resolution method. We implement the non-linear Gaussian fitting routine at this phase 
of the analysis for the data presented in Figure 4 and 5 of main paper.   
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Section S.3. Effective diffusivity of a particle pair  
 
The effective diffusivity of a pair of particles, Deff, should scale with the standard deviation 
distance between two particles as follows:  
   

effDrrr ~12 −=∆ .                        (3.1) 
 
We assume that particle 1 and particle 2 positions 1r  and 2r  are statistically independent, and 
estimate a time average of their convolution as 
 

021 =rr ,                            (3.2) 
 
so the time averaged distance between them reduces to: 
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where Dp1 and Dp2 are respectively the diffusivities of particles 1 and 2. Very closely spaced 
particles may in fact exhibit a modified effective diffusivity, but we here offer this simple 
analysis to estimate statistics associated with particles diffusing away from each other.  
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Section S.4. 2D nearest neighbor model for randomly distributed particles 

Let w(r)dr denote the probability that the nearest neighbor to a particle occurs between r and 
r+dr. This probability must be equal to the probability that no particles exist interior to r times 
the probability that a particle does exist between rand r+dr. Therefore, the function w(r) must 
satisfy the relation: 

ηπrdrrwrw
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where η  denotes the average number of particles per unit area. From Eq. 1 we can write 
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Hence, the required law of distribution of the nearest neighbor becomes 

( ) ηπηπ rrrw 2exp)( 2−=                        (4.3) 

since, according to Eq. 4.1, 

)(rw → asrηπ2  r → 0.                             (4.4) 

By definition, the average distance between particles with distribution )(rw is 

∫
∞

=
0

)( drrrwLIP .                         (4.5) 

Combining Eq. 4.3 and 4.5, LIP becomes 

( )∫
∞
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22 2exp drrrLIP ηπηπ .                      (4.6) 

After some basic reductions, we arrive to: 
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Substituting for Γ(3/2), we find 

215.0 −= ηIPL .                          (4.9)  
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Section S.5. Influence of image SNR and particle density on particle tracking accuracy 

Figure S.2 describes the influence of image signal-to-noise ratio (SNR) and particle density on 
the accuracy of our particle tracking algorithm, as determined using our Monte Carlo simulation 
images. Shown are histograms of tracked particle times in units of frames (the number of 
frames/images over which individual particles where successfully tracked) as a function of SNR 
and LIP/Lch. 

  

          
               SNR = 2 
            LIP/Lch = 4.6 

    SNR = 100 
   LIP/Lch = 4.6 

         SNR = 100 
         LIP/Lch = 6.5 

     SNR = 100 
    LIP/Lch = 1.6 

 
Figure S.2. Histogram of the number of particles that were tracked for 1 to 20 frames. Left: Simulated 
particle density was set to 100 particles/domain (LIP /Lch = 4.6). The PMC method relies on brightness 
patterns for identification of particles. When SNR is too low (SNR ≤ 6), the brightness patterns are 
distorted and particles are not easily identified. For SNR of 5 or above, over 95% of particles are tracked 
for 10 s or longer. Right: SNR for Monte Carlo simulated images were set to 100. PMC method fails if 
particle brightness pattern is overly affected by neighboring particles and Kalman filter and χ2 test will fail 
as trajectories of closely spaced particles become indistinguishable. As the inter-particle distance 
decreases, the particles can be tracked successfully for progressively shorter times as they are lost due to 
particle crowding. For LIP /Lch ≤ 3.2 large fractions of these particles are tracked for shorter times than 
that required for collocation (i.e., the minimum evolution time, tch, defined in Eq. 2 of main paper). 
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Section S.6. Limit of detection of PITC method 
 

To study the limit of detection (LOD) of our method in the absence of bound particles and to 
quantify false positive rates in negative controls, we performed collocation on image sets with 
0% simulated bound particle fraction (Fig. S.3). The total number of 1 μm diameter particles in 
each image from the Monte Carlo simulation is 100 (with a mean inter-particle distance of 
roughly 14 μm). At image SNR = 100, the PITC algorithm found that bound particle doublets 
made up 0.9%, 0.6%, and 0.25% of the total particles with collocation threshold values of 0.6, 
0.7 and 0.8, respectively.  False positive collocation detections occur in the negative control case 
due to failure of the particle intensity threshold filter we implemented in the collocation phase. 
This intensity based threshold relies on the intensity distribution of true positive particle matches 
in Ch2. Since there are no true positive matches in the negative control case, the intensity 
distribution obtained this way is not a true representation of the Ch2 particle intensities. These 
bound fractions, therefore, represent the limit of detection (LOD) of our method in the absence 
of a priori Ch2 particle intensity calibration. To improve the LOD, we recommend the evaluation 
of particle intensities in Ch2 using the PMC-PC method. The calibrated intensity distribution can 
then be used to filter particle matches in the collocation phase. After we performed a simple 
calibration of Ch2 particles, the PITC algorithm detected 0% bound fractions for all collocation 
thresholds in the negative control case. 
 
 

 
Figure S.3. Limit of detection of PITC collocation in the absence of particle intensity calibration. Using 
three collocation threshold values, PITC detected 0.9%, 0.5% and 0.3% false positive bound fraction in  
the simulated image sets. The false positive bound fraction is reduced to 0% for all 12

~R , when calibrated 
Ch2 particle intensity distribution is used as the basis of the intensity-based filter in the collocation phase.     
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Section S.7 Influence of particle density on collocation performance 

In Figure S.4, we analyze the influence of particle density on collocation performance by 
comparing the inter-particle distance, LIP, to the characteristic distance that two randomly 
aligned particles must separate for the algorithm to consider them unbound, Lch (Eq. 1 of main 
paper). Here we also examine the influence of monitoring time, tm on collocation by comparing 
tm to the minimum elution time, tch (Eq. 2 of main paper), the characteristic time it takes two 
randomly bound particles to separate by Lch. Fig. S.4 shows the ratio between the evaluated and 
simulated bound fraction as a function of LIP/Lch and tm/tch, using two collocation thresholds

7.0,6.0~
12 =R . In a single instance in time, the collocation algorithm cannot differentiate 

between random and deterministic particle interactions. When particle densities are low (high 
LIP/Lch), the random particle-particle interactions are rare, and the bound fractions detected by 
PITC converge to the simulated values for all tm and 12

~R . When high particles densities (low 
LIP/Lch) yield frequent random particle-particle interactions, the bound particle fractions for short 
observation times are over-predicted as expected. For example, for LIP/Lch = 1.6 and a 
collocation threshold of 6.0~

12 =R , the PITC algorithm detects ~6.2 times the simulated bound 
particle events for the shortest monitoring time (tm/tch = 0.77). Using a more conservative 
collocation threshold, 7.0~

12 =R , this error reduces to ~3.2 times the simulated fraction. For both 

values of 12
~R , increasing monitoring time improves collocation accuracy. When we increase the 

monitoring time to more than four times the evolution time of particle pairs (tm/tch > 3.87), the 
PITC algorithm detects ~1.5 times the simulated fraction at a challenging value of LIP/Lch = 1.6 
(using 7.0~

12 =R ).  

 
Figure S.4. Accuracy of particle hybrid count as a function of particle density, monitoring time, and 
collocation threshold. The simulated fraction of bound particles was set to 3%, and the image SNR to 
100. For all collocation thresholds, as the inter-particle distance decreases, the frequency of random 
particle-particle interaction increase. As a result, the algorithm overestimates the bound particle fraction. 
While the accuracy of collocation improves by increasing the monitoring time, tm, and increasing 
collocation threshold, 12

~R from 0.6 to 0.7, the error in the detected fraction for LIP/Lch < 3 is still 
significant. At LIP/Lch = 1.6, 7.0~

12 =R , and tm/tch = 3.87, PITC detects 4.5% bound. Using the same 
algorithm settings on image sets with lower particle density, PITC detects 3.23%, 2.87 % and 3.06% 
bound particle fractions at LIP/Lch of 3.2, 4.6 and 6.5, respectively.  
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While this trend suggests that increasing monitoring time leads to improved collocation 
accuracy, recall from Fig S.2 at high particle densities, the monitoring time is severely limited by 
the short LIP. Based on these results we recommend using particle densities which yield 
approximately LIP/Lch > 3, and collocation threshold of 7.0~

12 =R , but note that low SNR images 
will likely require a slightly lower value of 0.6 or 0.65. Finally, for all cases, we conclude that 
increasing monitoring time increases collocation certainty. In general, we recommend 
monitoring times of 2 times the minimum evolution time, tch, or higher. For our recommend 
value of 7.0~

12 =R and a value of tm/tch = 3.87 PITC predictions are within ~10% or less for 
SNR = 100, for the case of only 3% particles bound (bound fraction is estimated between 2.7% - 
3.3% for LIP/Lch > 3).  
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Section S.8. DNA induced bead-to-bead binding assay 

We demonstrate our assay by detecting the presence of target DNA by collocation of fluorescent 
beads bound to this target. Each bead had a unique spectral signature (red and green emission) 
and each was functionalized with unique DNA probe complementary to a portion of the target. 
When these probes hybridize to the target DNA, the two beads form a two-color doublet (Fig. 
S.5) The final bead solution contains at least three bead populations, red singlets, green singlets, 
and red-green bead doublets. We load the bead suspension onto a microfluidic chip (Fig. S.6) 
and image the beads as they traverse through the interrogation region. The beads used in this 
assay were carboxylate modified, (negatively charged at the operating pH of 8), so they 
electrophorese in the presence of an applied electric field. The beads were suspended freely in 
solution, so that we can levarage Brownian motion to separate randomly colocated beads, and so 
distinguish these from those which are deteriminstically bound via a DNA target.  

 
Figure S.5. Collocation particle imaging for DNA detection. A solution containing red and green beads 
was mixed with target DNA in a hybridization buffer. Bead doublet formed when Probe 1 on red 
fluorescence bead (Bead 1) and Probe 2 on green fluorescence bead (Bead 2) are hybridized to the target 
DNA sequence. The bead-DNA mixture was electrophoresed in a channel with a transparent top wall and 
visualized using a microscope equipped with a dual-view system and high-sensitivity CCD camera. 
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Section S.9. List of fluorescent beads and DNA sequences 

Bead 1: 
FluoSpheres® microspheres (Molecular Probes, Life Technologies) 
Label (Ex/Em): Yellow-green (505/515 nm) 
Catalog number: F8823 
Nominal bead diameter: 1.0 µm 
Coupling surface: Carboxylate 
Solids: 2% 
DNA probe (desalted):  
5’- Amino Modifier C12- CACAAAGTGGTAAGCGCCCTC 
 
Bead 2: 
FluoSpheres® microspheres (Molecular Probes, Life Technologies) 
Label (Ex/Em): Crimson-fluorescent (625/645 nm)  
Catalog number: F8816 
Nominal bead diameter: 1.0 µm 
Coupling surface: Carboxylate 
Solids: 2% 
DNA probe (desalted):  
5’- Amino Modifier C12 – CGGATTGGAGTCTGCAACTCG 
 
The target DNA used was as follows:  
 
DNA target (PAGE purified): 
AAACGAGTTGCAGACTCCAATCCGAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGG
CGCTTACCACTTTGTGTTT 
 
DNA sequences  
The desalted DNA probes and PAGE purified DNA targets were purchased from Integrated 
DNA Technologies (IDT, Coralville, IA) 
 
Immobilization 
Beads were functionalized with Amine modified DNA probes by Radix Biosolutions 
(Georgetown, TX), and suspended in Tris-EDTA, pH 8 at 2% solids.  
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Section S.10. Chip schematic and loading protocol 

The buffered bead suspension contained 20 mM Tris, 10 mM hydrochloric acid, HCl, 0.08% 
Triton X-100, 50 mM sodium chloride, NaCl, 10 nM target DNA, and 3x108 beads/mL of each 
color. The solution was pressure loaded into a poly(methyl methacrylate) (PMMA) microfluidic 
chip of dimensions 2 mm x 150 µm x 10 cm (total length). End-channel reservoirs and one mid-
channel reservoir were filled with approximately the same volume of aqueous buffer solution 
(1 M Tris, 500 mM HCl) in attempt equalize hydrostatic pressure and minimize pressure driven 
flow. To reduce unwanted pressure-driven flows in the channels, we used pluronic-F127 as a 
phase change material to seal off the buffering well.1  Our mixture of pluronic-F127 is a liquid at 
low temperature and solidifies into a gel at room temperature.2   
 

 
Figure S.6. Fluidic channel architecture and loading protocol used in demonstration of particle imaging, 
tracking and collocation method. The microfluidic fluidic chip was loaded with the buffered bead 
suspension. The output well was filled with 50 µl of 1 M Tris-HCl (pH 8) buffer. The loading well was 
filled with the same buffer containing 25% Pluronic F-127 solution in order to reduce pressure driven 
flow. Platinum electrodes were placed in the loading and output well and electrophoresis was initiated by 
applying 100 µA across the microchannel. In a typical experiment, we record 200 chromatically separated 
particle images at a frequency of 1Hz. During this time, order 1,000-10,000 unique beads traverse through 
the field of view. 
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